• Home
  • Athlete Multihull Shorts Womens Black
Out of stock

Athlete Multihull Shorts Womens Black

Go faster and further with Body Science Multi Hull Shorts

Athletic Kayak & Ski Shorts Designed by Olympic Kayak Gold Medallist Kenny Wallace. Targeted ® Compression with Neo-protective-butt-gripping technology. Our garments last longer than others. AUSTRALIAN MADE IN BURLEIGH HEADS GOLD COAST

For too long rowers, kayakers and water sport enthusiasts alike have been suffering from chafe, calluses and sores due to poor clothing options when training and competing. The Multi Hull short has been specifically designed to address these issue, whilst instilling the benefits of Targeted Compression, into the one unique garment.

With the help of Gold Medallist Kenny Wallace comes the very first compression garment specifically designed for paddle sport fanatics. The difference in the Multi Hull shorts lies in the specialised design of the garment, and includes:

  • Development & insertion of a specialised shaped & sized Protective Gluteal Sheath into a compression garment
  • Specific seamed panel positioning that is tailored towards the specific comfort  of Kayakers / Canoeists / Paddlers
  • Lower body graduated compression designed especially for a sitting positioned athlete – normally a garment is designed for vertical plane performance with this kayaker garment we had to make the adjustments & changes on a horizontal plane
  • Lower body graduated compression that provides extra comfort within the wet environment

Not only has the garment addressed compression and sitting discomfort issues, but the stitching within the garment has undergone extensive testing in order to eliminate chaffing and rubbing causing discomfort, sores & resulting poor performance.

Go faster and further with Body Science Multi Hull Shorts.

Muscle Specific Compression:

Leg Group

 HamstringA complex muscle in design, the Hamstrings consists of 3 muscles which are predominantly responsible for flexion of the knee and extension of the thigh making it a central muscle in athletic disciplines. The cut of BSc targeted compression hamstring panel has been designed to keep these 3 muscles in line and at optimal position. This allows a reduction in the delayed onset of muscle soreness (DOMS) by accelerating the inflammatory and repair timeframe within the muscle.

 QuadThe action of running involves constant movements between extension and flexion causing a great degree of oscillatory movement to occur in skeletal muscles particularly the Quadriceps as they are forced to accelerate, decelerate and absorb impact shocks. The panel arrangement implemented by BSc targeted compression garment acts to enclose each of the 4 Quadriceps muscles like a sheath significantly reducing longitudinal and anterior-posterior muscle oscillation, ultimately aiding muscle recovery post exercise.  Often problems with the knees come back to poor alignment of these muscles which eventuates with injury under fatigue. The hand crafted cut of the targeted compression garment reduces muscle and ligament strain of the knee by improving spatial awareness of the muscles and improving lactic acid removal allowing a reduction in fatigue.

GroinThe Adductors or Groin consists of 4 muscles which are responsible for Adduction, hip flexion and lateral rotation of the thigh. Groin Strains are quite common with these muscles due to muscles becoming hypertonic with use and when stretched often tear. BSc targeted compression panels have been designed to increase groin proprioception via greater feedback from skin proprioceptors as a consequence of the tactile interaction between the garments and the skin surface whiles also enhancing the core muscle temperature, ultimately resulting in fewer incidents of injury.




GlutsExplosive actions of the leg often start from the Gluteal muscle. One of the strongest muscles in the human body, special attention has been made in BSc targeted compression design in targeting this muscle group. Seam and panel alignment  provide the ultimate in compression by enhancing blood flow to the Gluteal muscle group and acting as an elastic band by providing stored potential energy in the compression garments to facilitate explosive power.


Compression Overview: 


Recent research in trained athletes reported that compression garments increased VO2max by 10% and anaerobic threshold by 40% (13). Given that these two physiological variables are highly correlated to success in endurance sports compression garments may provide a significant competitive advantage for endurance athletes.


It has been suggested that excess oscillatory displacement of a muscle during a dynamic movement may contribute to fatigue and interfere with neurotransmission and optimal muscle recruitment patterns (14). Recent research reported that compression garments were able to significantly reduce longitudinal and anterior-posterior muscle oscillation by 0.32 and 0.40cm respectively upon landing from a maximal vertical jump (7).


Proprioception or joint position sense has major implications to athletic performance, particularly in the areas of technique and injury prevention. Research investigating hip joint proprioception reported significantly greater joint position sense at both 45 and 60 degrees hip flexion (11).


Explosive muscular power is highly correlated with success in most sports. Research in track and field athletes has reported a 5.2% increase in maximal vertical jump height when vertical jumps are measured wearing compression garments (7).


High intensity exercise produces lactic acid which presents a challenge to the body’s ability to maintain pH within the narrow physiological range. This in turn can negatively impact the force generating capacity of the muscle which results in muscle fatigue and impaired athletic performance. Data published by Berry and McMurray (1) showed a 14% decrease in blood lactate concentrations 15 minutes following high intensity exercise when compression garments were worn during and after exercise. 


Muscle damage is an inevitable consequence of high intensity exercise and any technique that can facilitate muscle repair and faster recovery is of large benefit to the athlete. A study in elite Rugby Union players reported that compression garments worn immediately after a rugby match significantly reduced markers of muscle damage (creatine kinase) compared to passive recovery at 36 and 84 hours post match (8)


  1. Berry, M.J. McMurray, R.G. Effects of graduated compression stockings on blood lactate following an exhaustive bout of exercise. American Journal of Physical Medicine. 66:121-132, 1987
  2.  Bringard, A. S. Perrey, N. Belluye. Aerobic Energy Cost and Sensation Responses During Submaximal Running Exercise - Positive Effects of Wearing Compression Tights Int J Sports Med. 27:373-378, 2006. 
  3. Caraffa, A., Cerulli, G., Projetti, M., Aisa, G., Rizzo, A. Prevention of anterior cruciate ligament injuries in soccer. Knee surgery, sports traumatology, arthroscopy) 4:19-21, 1996.
  4. Chatard, J.C. Atlaoui, D., Farjanel, J. Louisy, F. Rastel, D. Guezennec, C.Y. Elastic stockings, performance and leg pain recovery in 63-year-old sportsmen. European Journal of Applied Physiology. 93:347-352, 2004.
  5. Cheung, K. Hume, P. Maxwell, L. Delayed onset muscle soreness : treatment strategies and performance factors. Sports Medicine. 33:145-164, 2003.
  6. Cook, D.B., O'Connor, P.J. Eubanks, S.A. Smith, J.C. Lee, M. Naturally occurring muscle pain during exercise: assessment and experimental evidence. Medicine & Science in Sports & Exercise. 29:999-1012, 1997.
  7. Doan, B.K., Kwon, Y.H. Newton, R.U. Shim, J. Popper, E.M. Rogers, R.A. Bolt, L.R. Robertson, M. Kraemer, W.J. Evaluation of a lower-body compression garment. Journal of Sports Sciences. 21:601-610, 2003.
  8. Gill, N.D. Beaven, C.M. and Cook, C. Effectiveness of post-match recovery strategies in rugby players British Journal of Sports Medicine. 40:260-263, 2006.
  9. Kraemer, W.J., Bush, J.A., Bauer, J.A., Triplett-McBride, N.T., Paxton, N.J., Clemson, A., Koziris, L.P., Mangino, L.C., Fry, A.C., Newton, R.U. Influence of compression garments on vertical jump performance in NCAA Division I volleyball players. Journal of strength and conditioning research 10:180-183, 1996.
  10. Kraemer, W.J., Bush, J.A., Triplett-McBride, N.T., Koziris, L.P., Mangino, L.C., Fry, A.C., McBride, J.M., Johnston, J., Volek, J.S., Young, C.A., Gomez, A.L., Newton, R.U. Compression garments: influence on muscle fatigue. Journal of strength and conditioning research 12: 211-215, 1998
  11. Kraemer, W.J., Bush, J.A., Newton, R.U., Duncan, N.D., Volek, J.S., Denegar, C.R., Canavan, P., Johnston, J., Putukian, M., Sebastianelli, W.J. Influence of a compression garment on repetitive power output production before and after different types of muscle fatigue. Sports medicine, training and rehabilitation 8:163-184, 1998
  12. Kraemer, W.J., Bush, J.A., Wickham, R.B., Denegar, C.R., Gomez, A.L., Gotshalk, L.A., Duncan, N.D., Volek, J.S., Putukian, M., Sebastianelli, W.J. Influence of compression therapy on symptoms following soft tissue injury from maximal eccentric exercise. The journal of orthopaedic & sports physical therapy 31: 282-290, 2001.
  13. Lambert, S. A crossover trial on the effects of graded compression garments exercise and recovery. Journal of Science and Medicine in Sport. 8:S222, 2005.
  14. McComas, A.J. Skeletal Muscle: Form and Function.Champaign,IL, Human Kinetics. 1996. 
  15. Parkkari, J. Kujala, U.M. Kannus, P. Is it possible to prevent sports injuries? Review of controlled clinical trials and recommendations for future work. Sports Medicine. 31:985-995, 2001.
  16. Powers, S.K. and Howley, E.T. Exercise Physiology: Theory and Application to Fitness and Performance.McGraw-Hill,USA. 1998.
  17. Trenell, M.I. Rooney, K.B. Sue, C.M. and Thompson, C.H. Compression garments and recovery from eccentric exercise: A 31P-MRS study. Journal of Sports Science and Medicine. 2006 5: 106-114. 

Write Your Own Review

You're reviewing: Athlete Multihull Shorts Womens Black

© 2018 Body Science International. All Rights Reserved.